Binary options uk reviews -

Compiling for AMD processor from Intel processor, what am I missing?

I am trying to compile my source on a machine with an Intel core-i7 processor to run the binary on a server with opteron processors using the Clang compiler. I use march=opteron when compiling and as the code is computationally expensive I use -O3. Because I can not install shared libraries on the server I statically link the binary using -static. When I run the binary on the server it states "Illegal Instruction" and terminates. Using Valgrind I get the following information:
vex amd64->IR: unhandled instruction bytes: 0xC5 0xF8 0x77 0xC3 0x66 0xF 0x1F 0x44 vex amd64->IR: REX=0 REX.W=0 REX.R=0 REX.X=0 REX.B=0 vex amd64->IR: VEX=0 VEX.L=0 VEX.nVVVV=0x0 ESC=NONE vex amd64->IR: PFX.66=0 PFX.F2=0 PFX.F3=0 ==39137== valgrind: Unrecognised instruction at address 0x555056.
Which by googling suggests that the binary contains an SSE instruction that is not present on the opteron processor.
My questions are:
  1. Why is Clang producing a binary that contains instructions not present in the architecture I am telling it to compile for?
  2. Is the optimization overriding the architecture option I am giving the compiler? I thought it would try to optimize subject to which instructions are available.
  3. What can I do to fix this problem?
Thanks in advance, I look forward to hearing where I have gone wrong!
submitted by Insight_ to cpp_questions [link] [comments]

Adafruit Space Invader pendant. Want to convert to using a bicolor 1.2 led matrix. How would the code change?

 // Trinket/Gemma + LED matrix backpack jewelry. Plays animated // sequence on LED matrix. Press reset button to display again, // or add optional momentary button between pin #1 and +V. // THERE IS NO ANIMATION DATA IN THIS SOURCE FILE, you should // rarely need to change anything here. EDIT anim.h INSTEAD. #define BRIGHTNESS 14 // 0=min, 15=max #define I2C_ADDR 0x70 // Edit if backpack A0/A1 jumpers set #include  #include  #include  #include "anim2.h" // Animation data is located here #include "anim3.h" // Animation data is located here #include "anim4.h" // Animation data is located here static const uint8_t PROGMEM reorder[] = { // Column-reordering table 0x00,0x40,0x20,0x60,0x10,0x50,0x30,0x70,0x08,0x48,0x28,0x68,0x18,0x58,0x38,0x78, 0x04,0x44,0x24,0x64,0x14,0x54,0x34,0x74,0x0c,0x4c,0x2c,0x6c,0x1c,0x5c,0x3c,0x7c, 0x02,0x42,0x22,0x62,0x12,0x52,0x32,0x72,0x0a,0x4a,0x2a,0x6a,0x1a,0x5a,0x3a,0x7a, 0x06,0x46,0x26,0x66,0x16,0x56,0x36,0x76,0x0e,0x4e,0x2e,0x6e,0x1e,0x5e,0x3e,0x7e, 0x01,0x41,0x21,0x61,0x11,0x51,0x31,0x71,0x09,0x49,0x29,0x69,0x19,0x59,0x39,0x79, 0x05,0x45,0x25,0x65,0x15,0x55,0x35,0x75,0x0d,0x4d,0x2d,0x6d,0x1d,0x5d,0x3d,0x7d, 0x03,0x43,0x23,0x63,0x13,0x53,0x33,0x73,0x0b,0x4b,0x2b,0x6b,0x1b,0x5b,0x3b,0x7b, 0x07,0x47,0x27,0x67,0x17,0x57,0x37,0x77,0x0f,0x4f,0x2f,0x6f,0x1f,0x5f,0x3f,0x7f, 0x80,0xc0,0xa0,0xe0,0x90,0xd0,0xb0,0xf0,0x88,0xc8,0xa8,0xe8,0x98,0xd8,0xb8,0xf8, 0x84,0xc4,0xa4,0xe4,0x94,0xd4,0xb4,0xf4,0x8c,0xcc,0xac,0xec,0x9c,0xdc,0xbc,0xfc, 0x82,0xc2,0xa2,0xe2,0x92,0xd2,0xb2,0xf2,0x8a,0xca,0xaa,0xea,0x9a,0xda,0xba,0xfa, 0x86,0xc6,0xa6,0xe6,0x96,0xd6,0xb6,0xf6,0x8e,0xce,0xae,0xee,0x9e,0xde,0xbe,0xfe, 0x81,0xc1,0xa1,0xe1,0x91,0xd1,0xb1,0xf1,0x89,0xc9,0xa9,0xe9,0x99,0xd9,0xb9,0xf9, 0x85,0xc5,0xa5,0xe5,0x95,0xd5,0xb5,0xf5,0x8d,0xcd,0xad,0xed,0x9d,0xdd,0xbd,0xfd, 0x83,0xc3,0xa3,0xe3,0x93,0xd3,0xb3,0xf3,0x8b,0xcb,0xab,0xeb,0x9b,0xdb,0xbb,0xfb, 0x87,0xc7,0xa7,0xe7,0x97,0xd7,0xb7,0xf7,0x8f,0xcf,0xaf,0xef,0x9f,0xdf,0xbf,0xff }; int animationSection = 0; void ledCmd(uint8_t x) { // Issue command to LED backback driver Wire.beginTransmission(I2C_ADDR); Wire.write(x); Wire.endTransmission(); } void clear(void) { // Clear display buffer Wire.beginTransmission(I2C_ADDR); for(uint8_t i=0; i<17; i++) Wire.write(0); Wire.endTransmission(); } void setup() { power_timer1_disable(); // Disable unused peripherals power_adc_disable(); // to save power PCMSK |= _BV(PCINT1); // Set change mask for pin 1 Wire.begin(); // I2C init clear(); // Blank display ledCmd(0x21); // Turn on oscillator ledCmd(0xE0 | BRIGHTNESS); // Set brightness ledCmd(0x81); // Display on, no blink } uint8_t rep = REPS; void loop() { switch (animationSection) { case 0: for(int i=0; i 10) { animationSection = 0; } if(!--rep) { // If last cycle... ledCmd(0x20); // LED matrix in standby mode // GIMSK = _BV(PCIE); // Enable pin change interrupt // power_all_disable(); // All peripherals off // set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep_enable(); // sei(); // Keep interrupts disabled // sleep_mode(); // Power down CPU (pin 1 will wake) // Execution resumes here on wake. // PLD - Simply Sleep for 2 minutes then start again... //delay(100000); //delay(100000); delay(120000); animationSection = 0; GIMSK = 0; // Disable pin change interrupt rep = REPS; // Reset animation counter power_timer0_enable(); // Re-enable timer power_usi_enable(); // Re-enable USI Wire.begin(); // Re-init I2C clear(); // Blank display ledCmd(0x21); // Re-enable matrix } } ISR(PCINT0_vect) {} // Button tap 
This is a section of the anim file. I want to be able to set the various colors in these "frames"
// Animation data for Trinket/Gemma + LED matrix backpack jewelry. // Edit this file to change the animation; it's unlikely you'll need // to edit the source code. #define REPS 10 // Number of times to repeat the animation loop (1-255) const int frameSpeed2 = 3; const uint8_t PROGMEM anim2[] = { // Animation bitmaps. Each frame of animation MUST contain // 8 lines of graphics data (there is no error checking for // length). Each line should be prefixed with the letter 'B', // followed by exactly 8 binary digits (0 or 1), no more, // no less (again, no error checking). '0' represents an // 'off' pixel, '1' an 'on' pixel. End line with a comma. B00000000, B00000000, B00000000, B00000000, B00000000, B00000000, B00000000, B00000000, frameSpeed2, // 0.10 seconds }; 
submitted by pldiguanaman to arduino [link] [comments]

While the builtin open() and the associated io module are the recommended approach for working with encoded text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs when working with binary files:. (filename, mode='r', encoding=None, errors='strict', buffering=-1) ¶ ... 0xc5 binary options; Forextime nigeria office of statistics / Equidistant channel metatrader for mac; MasterForex metatrader 5 / Aud vs USD chart Forex; Sims 4 invest in stocks; Invest group bahrain; Must read investing books / Garrison investment group businessweek business ; Binary trade options reviews; Main investment limited saint lucia; Zhongrun resources investment advisors / 1 USD to ... TP-Link Archer A7/C7 - Unauthenticated LAN Remote Code Execution (Metasploit). CVE-2020-10884CVE-2020-10883CVE-2020-10882 . remote exploit for Linux_MIPS platform Friday, 11 August 2017. 0xc5 Biner Pilihan Example: 8 bit Int with a value 0xC5 11000101 = Value in binary 11100010 = Rotated Right 1 bit 01110001 = Rotated Right 2 bits . Shift works just like Rotate, except for what happens to the end bits. On one side the bits are shifted out and the other bits are shifted in. There are typically 3 options: Shift Left or Right? Binary options broker demo account; Prinsen invest bv helmond nETHerlands; Simple binary options trading strategies / Forex no deposit bonus 100 bill; Labour sponsored investment funds saskatchewan government / Ific investment funds course; Brendan helley investment / Trifecta system Forex trading; Forex news trading dustin pass ; Camarilla Forex download; Simple binary options trading ... Binary Options Broker Hoewel binêre opsies is 'n relatief nuwe manier om handel te dryf in die aandelemark en ander finansiële markte, dit i...

[index] [1902] [6572] [2558] [1668] [4978] [15899] [27305] [24164] [28440] [9127]